20671025

From SEQwiki
Jump to: navigation, search

This reference describes ShoRAH.

PMID PMID 20671025
Title Error correction of next-generation sequencing data and reliable estimation of HIV quasispecies
Year 2010
Journal Nucleic Acids Research
Author Zagordi O, Klein R, Daeumer M, Beerenwinkel N
Volume
Start page


Error: No contents found at URL http://www.ebi.ac.uk/europepmc/webservices/rest/MED/20671025/citations/4000.

According to Europe PubMed Central, this reference has Error: no local variable "citations" was set. " Error: no local variable "citations" was set. " is not a number. citations.

For reference, you can check Google Scholar, which lacks an API because Google ...


Error: Invalid JSON. According to Almetric, this reference has an Altmetric score of Error: no local variable "altscore" was set. " Error: no local variable "altscore" was set. " is not a number..

Full text description

Next-generation sequencing technologies can be used to analyse genetically heterogeneous samples at unprecedented detail. The high coverage achievable with these methods enables the detection of many low-frequency variants. However, sequencing errors complicate the analysis of mixed populations and result in inflated estimates of genetic diversity. We developed a probabilistic Bayesian approach to minimize the effect of errors on the detection of minority variants. We applied it to pyrosequencing data obtained from a 1.5-kb-fragment of the HIV-1 gag/pol gene in two control and two clinical samples. The effect of PCR amplification was analysed. Error correction resulted in a two- and five-fold decrease of the pyrosequencing base substitution rate, from 0.05% to 0.03% and from 0.25% to 0.05% in the non-PCR and PCR-amplified samples, respectively. We were able to detect viral clones as rare as 0.1% with perfect sequence reconstruction. Probabilistic haplotype inference outperforms the counting-based calling method in both precision and recall. Genetic diversity observed within and between two clinical samples resulted in various patterns of phenotypic drug resistance and suggests a close epidemiological link. We conclude that pyrosequencing can be used to investigate genetically diverse samples with high accuracy if technical errors are properly treated.